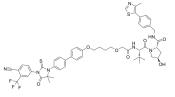
Proteins

Product Data Sheet

ARCC-4

Cat. No.: HY-130492 CAS No.: 1973403-00-7 Molecular Formula: $C_{53}H_{56}F_{3}N_{7}O_{7}S_{2}$ Molecular Weight: 1024.18

Target: Androgen Receptor; PROTACs


Pathway: Vitamin D Related/Nuclear Receptor; PROTAC

-20°C Storage: Powder 3 years

In solvent

4°C 2 years -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 200 mg/mL (195.28 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	0.9764 mL	4.8820 mL	9.7639 mL
	5 mM	0.1953 mL	0.9764 mL	1.9528 mL
	10 mM	0.0976 mL	0.4882 mL	0.9764 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 5 mg/mL (4.88 mM); Suspended solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 5 mg/mL (4.88 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 5 mg/mL (4.88 mM); Clear solution

BIOLOGICAL ACTIVITY

Description ARCC-4 is a low-nanomolar Androgen Receptor (AR) degrader based on PROTAC, with a DC₅₀ of 5 nM. ARCC-4 is an enzalutamide-based von Hippel-Lindau (VHL)-recruiting AR PROTAC and outperforms enzalutamide. ARCC-4 effectively degrades clinically relevant AR mutants associated with antiandrogen therapy^[1].

IC₅₀ & Target VHL

In Vitro ARCC-4 induces apoptosis and inhibiting proliferation of AR-amplified prostate cancer cells^[1]. ARCC-4 enhances protein-protein interactions between AR and VHL, thereby promoting the association of the trimeric complex^[1].

ARCC-4 (0.1-10,000 nM; 20 hours) potently degrades AR with a D_{50} of 5 nM and D_{max} of over $95\%^{[1]}$.

ARCC-4 (100 nM; 12 hours) shows near complete AR degradation (>98%) in prostate cancer cells^[1].

ARCC-4 selectively degrades AR via the proteasome but not PR-A or PR-B suppression^[1].

ARCC-4 shows efficacy against clinically relevant AR mutations^[1].

ARCC-4 maintains activity despite elevated androgen levels^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[1]

Cell Line:	VCaP cells	
Concentration:	0.1 nM, 1 nM, 10 nM, 50 nM, 100 nM, 0.5μM, 1μM, 10 μM	
Incubation Time:	20 hours	
Result:	Potently degrades AR	

REFERENCES

[1]. Salami J, et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol. 2018 Aug 2;1:100.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA