Proteins

Quisinostat

Cat. No.: HY-15433 875320-29-9 CAS No.: Molecular Formula: $C_{21}H_{26}N_{6}O_{2}$ Molecular Weight: 394.47

Target: HDAC; Apoptosis; Autophagy

Pathway: Cell Cycle/DNA Damage; Epigenetics; Apoptosis; Autophagy

Storage: Powder -20°C 3 years

> In solvent -80°C 6 months

> > -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (126.75 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.5350 mL	12.6752 mL	25.3505 mL
	5 mM	0.5070 mL	2.5350 mL	5.0701 mL
	10 mM	0.2535 mL	1.2675 mL	2.5350 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.34 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: ≥ 2.5 mg/mL (6.34 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.34 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Quisinostat (JNJ-26481585) is a potent, second-generation and orally active pan-HDAC inhibitor (HDACi), with IC $_{50}$ va		
	ranging from 0.11 nM to 0.64 nM for HDAC1, HDAC2, HDAC4, HDAC10 and HDAC11. Quisinostat has a broad spectrum		
	antitumoral activity $^{[1]}$. Quisinostat can induce autophagy in neuroblastoma cells $^{[2]}$.		

IC ₅₀ & Target	HDAC1 0.11 nM (IC ₅₀)	HDAC2 0.33 nM (IC ₅₀)	HDAC4 0.64 nM (IC ₅₀)	HDAC10 0.46 nM (IC ₅₀)
	HDAC11 0.37 nM (IC ₅₀)	HDAC3 4.86 nM (IC ₅₀)	HDAC5 3.69 nM (IC ₅₀)	HDAC8 4.26 nM (IC ₅₀)

	HDAC9 32.1 nM (IC ₅₀)	HDAC6 76.8 nM (IC ₅₀)	HDAC7 119 nM (IC ₅₀)	
In Vitro	Quisinostat inhibits HDAC isozymes in vitro ^[1] . ?Quisinostat (30-1000 nM; 24 hours) is a potent pan-HDAC inhibitor in tumor cells ^[1] . ?Quisinostat has a broad spectrum antiproliferative activity against solid and hematologic cancer cell lines and induce apoptosis ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Western Blot Analysis ^[1]			
	Cell Line:	Human A2780 ovarian carcinoma cells		
	Concentration:	30 nM, 100 nM, 300 nM, 1000 nN	М	
	Incubation Time:	24 hours		
	Result:	Induced H3 and H4 acetylation	at concentrations as low as 30 to 100 nM.	
In Vivo	Quisinostat (40 mg/kg; p.o.; once daily; for 3 days) acts as a potent HDAC1 inhibitor that inhibits p21waf1,cip1 ZsGreen tumors in vivo ^[1] . ?Quisinostat induces continuous H3 acetylation in tumor tissue in vivo ^[1] . ?Quisinostat (10 mg/kg; once daily; i.p.; for 14 days) strongly inhibits the growth of large pre-established HCT116 colon			

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

Animal Model:	NMRI nude mice, with HCT116 colon carcinoma cells xenografts ^[1]	
Dosage:	10 mg/kg	
Administration:	Intraperitoneal injection, once daily, for 14 days	
Result:	Strongly inhibited the growth of large pre-established HCT116 colon xenografts.	

CUSTOMER VALIDATION

- Theranostics. 2019 Jan 30;9(4):1096-1114.
- NPJ Precis Oncol. 2023 Jul 21;7(1):70.
- Toxicol Appl Pharmacol. 2021 Jan 1;410:115363.
- The Faculty For Chemie And Pharmazie, Albert-ludwigs-university Of Freiburg. 2019 Dec.
- Exp Hematol Oncol. 2019 Nov 15;8:30.

See more customer validations on www.MedChemExpress.com

 $xenografts ^{[1]}.\\$

REFERENCES

[1]. Arts J, et al. JNJ-26481585, a novel "second-generation" oral histone deacetylase inhibitor, shows broad-spectrum preclinical antitumoral activity. Clin Cancer Res. 2009 Nov 15;15(22):6841-51.

[2]. Vamsi Krishna Kommalapati, et al. Inhibition of JNJ-26481585-mediated autophagy induces apoptosis via ROS activation and mitochondrial membrane potential disruption in neuroblastoma cells. Mol Cell Biochem. 2020 May;468(1-2):21-34.

Page 2 of 3 www.MedChemExpress.com

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fa

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com