Product Data Sheet

Navtemadlin

Cat. No.:HY-12296CAS No.:1352066-68-2Molecular Formula: $C_{28}H_{35}Cl_2NO_5S$ Molecular Weight:568.55

Target: MDM-2/p53; E1/E2/E3 Enzyme

Pathway: Apoptosis; Metabolic Enzyme/Protease

Storage: Powder -20°C 3 years 4°C 2 years

* The compound is unstable in solutions, freshly prepared is recommended.

SOLVENT & SOLUBILITY

In Vitro

DMSO : \geq 50 mg/mL (87.94 mM) H₂O : \geq 0.1 mg/mL (0.18 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.7589 mL	8.7943 mL	17.5886 mL
	5 mM	0.3518 mL	1.7589 mL	3.5177 mL
	10 mM	0.1759 mL	0.8794 mL	1.7589 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 50% PEG300 >> 50% saline Solubility: 10 mg/mL (17.59 mM); Suspended solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.40 mM); Clear solution
- Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (4.40 mM); Clear solution
- 4. Add each solvent one by one: 5% DMSO >> 40% PEG300 >> 5% Tween-80 >> 50% saline Solubility: ≥ 2.5 mg/mL (4.40 mM); Clear solution
- Add each solvent one by one: PBS
 Solubility: 1.5 mg/mL (2.64 mM); Clear solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description

Navtemadlin (AMG 232) is a potent, selective and orally available inhibitor of p53-MDM2 interaction, with an IC₅₀ of 0.6 nM. Navtemadlin binds to MDM2 with a K_d of 0.045 nM^{[1][2]}.

IC ₅₀ & Target	IC50: 0.6 nM (p53-MDM2 interaction) $^{[1]}$ Kd: 0.045 nM (MDM2) $^{[1]}$		
In Vitro	Navtemadlin (AMG 232) (10 μ M) induces p53 signaling and inhibits tumor cell proliferation in three p53 wild-type tumor cell lines ^[1] . Navtemadlin potently inhibits proliferation of non-MDM2-amplified HCT116 colorectal cells (IC ₅₀ =10 nM) ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Viability Assay ^[1]		
	Cell Line:	SJSA-1, HCT116, ACHN, NCI-H460, MOLM-13, RKO, MCF7, 22RV1, HT-29, PC-3, NCI-H82, NCI-SNU1, MG-63, NCI-H2452, SW982, C32, SK-HEP-1, A375, RT4, RPMI2650, MDA-MB-134-VI, NCI-H2347 and A427 cells.	
	Concentration:	0-10 μΜ.	
	Incubation Time:	72 hours.	
	Result:	Induced p53 signaling and inhibits tumor cell proliferation in three p53 wild-type tumor cell lines (SJSA-1, HCT116, and ACHN). Caused robust p21 mRNA induction between 9.76 and 34.9 fold with IC50 values ranging from 12.8 to 46.8 nM.	
In Vivo	Navtemadlin (AMG 232) (10, 25, 75 mg/kg, once daily, p.o.) activates p53 pathway activity in vivo ^[1] . Navtemadlin (10, 25, 75 mg/kg, once daily, p.o.) potently inhibits growth of tumor xenografts in mice ^[1] . Navtemadlin (10, 25, 75 mg/kg, once daily, p.o.) blocks DNA synthesis and induces apoptosis in vivo ^[1] . Navtemadlin causes a dose-dependent tumor growth inhibition with an ED ₅₀ of 16 mg/kg ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	Female athymic nude mice (n=10/group) based cancer models $^{[1]}$.	
	Dosage:	10, 25, 75 mg/kg.	
	Administration:	Once daily by oral gavage.	
	Result:	Resulted in significant tumor growth inhibition across all models. SJSA-1, an MDM2 amplified osteosarcoma model, was the most sensitive to AMG 232 treatment with an ED $_{50}$ of 9.1 mg/kg. In the highest dose group of 75 mg/kg, 10/10 tumors completely regressed and were undetectable after 10 days of treatment.	

CUSTOMER VALIDATION

- Clin Transl Med. 2022 Jul;12(7):e961.
- Br J Cancer. 2023 Mar 23.
- Cell Death Discov. 2020 Jul 6;6:57.
- BMC Biol. 2017 Nov 9;15(1):108.
- Biomedicines. 2022, 10(3), 638.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Canon J, et al. The MDM2 Inhibitor AMG 232 Demonstrates Robust Antitumor Efficacy and Potentiates the Activity of p53-Inducing Cytotoxic Agents. Mol Cancer Ther. 2015 Mar;14(3):649-58.					
[2]. Rew Y, et al. Discovery of a small molecule MDM2 inhibitor (AMG 232) for treating cancer. J Med Chem. 2014 Aug 14;57(15):6332-41.					
Caution: Product has not been fully validated for medical applications. For research use only.					
Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com					
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA					

Page 3 of 3 www.MedChemExpress.com