Product Data Sheet

Cytochalasin D

Cat. No.: HY-N6682 CAS No.: 22144-77-0 Molecular Formula: $C_{30}H_{37}NO_{6}$ 507.62 Molecular Weight:

Target: Arp2/3 Complex; Antibiotic; YAP

Pathway: Cytoskeleton; Anti-infection; Stem Cell/Wnt

Storage: Powder -20°C 3 years

> In solvent -80°C 6 months

> > -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 25 mg/mL (49.25 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.9700 mL	9.8499 mL	19.6998 mL
	5 mM	0.3940 mL	1.9700 mL	3.9400 mL
	10 mM	0.1970 mL	0.9850 mL	1.9700 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

Cytochalasin D (Zygosporin A) is a potent actin polymerization inhibitor, could be derived from fungus. Cytochalasin D has cell-permeable activity. Cytochalasin D inhibits the G-actin-cofilin interaction by binding to G-actin. Cytochalasin D also inhibits the binding of cofilin to F-actin and decreases the rate of both actin polymerization and depolymerization in living cells. Cytochalasin D can reduce exosome release, in turn reducing the amount of survivin present in the tumour environment. Cytochalasin D induces phosphorylation and cytoplasmic retention of Yap^{[1][2][3][4]}.

In Vitro

Cytochalasin D (3 and 10 µM; 30 min) causes retraction and arborization of COS-7 cells and conversion of F-actin from long fibers to punctate structures^[1].

Cytochalasin D (0.3, 1, 3 and 10 μ M; 30 min) concentration-dependently decreases the rate of actin depolymerization in COS-7 cells^[1].

Cytochalasin D (1 μ M; NIH3T3 cells) disrupts stress fibers, and induces phosphorylation of Yap, while cells maintain the original area and lost nuclear Yap localization^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis

Cell Line:	$COS ext{-7}cells^{[1]}$	
Concentration:	3 and 10 μM	
Incubation Time:	30 min	
Result:	Caused retraction and arborization of COS-7 cells and conversion of F-actin from long fibers to punctate structures.	
Western Blot Analysis		
Cell Line:	COS-7 cells expressing YFP-actin ^[1]	
Concentration:	0.3, 1, 3 and 10 μM	
Incubation Time:	30 min	
Result:	Concentration-dependently decreased the rate of actin depolymerization in COS-7 cells.	

CUSTOMER VALIDATION

- Circ Res. 2023 Jan 6;132(1):87-105.
- Bioact Mater. 16 August 2022.
- Nat Commun. 2022 Sep 26;13(1):5657.
- Biomaterials. 13 January 2022, 121373.
- Autophagy. 2022 Sep 28;1-20.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Shoji K, et, al. Cytochalasin D acts as an inhibitor of the actin-cofilin interaction. Biochem Biophys Res Commun. 2012 Jul 20;424(1):52-7.
- [2]. Flanagan MD, et, al. Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin. J Biol Chem. 1980 Feb 10;255(3):835-8.
- [3]. Catalano M, et, al. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles. 2019 Dec 19;9(1):1703244.
- [4]. Wada K, et, al. Hippo pathway regulation by cell morphology and stress fibers. Development. 2011 Sep;138(18):3907-14.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA