IACS-010759 hydrochloride

MedChemExpress

®

Cat. No.:	HY-112037A	
CAS No.:	1807523-99-4	
Molecular Formula:	$C_{25}H_{26}CIF_{3}N_{6}O_{4}S$	F O
Molecular Weight:	599.02	
Target:	Apoptosis; Mitochondrial Metabolism	N-O N=
Pathway:	Apoptosis; Metabolic Enzyme/Protease	HCI
Storage:	4°C, sealed storage, away from moisture * In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)	

SOLVENT & SOLUBILITY

	Solvent Concentration	1 mg	5 mg	10 mg	
	Preparing Stock Solutions	1 mM	1.6694 mL	8.3470 mL	16.6939 mL
		5 mM	0.3339 mL	1.6694 mL	3.3388 mL
		10 mM	0.1669 mL	0.8347 mL	1.6694 mL

BIOLOGICAL ACTIVITY		
Description	IACS-010759 hydrochlorideis an orally active, potent mitochondrial complex I of oxidative phosphorylation (OXPHOS) inhibitor. IACS-010759 hydrochlorideinhibits proliferation and induces apoptosis in models of brain cancer and acute myeloid leukemia (AML) reliant on OXPHOS. IACS-010759 hydrochloride has the potential for relapsed/refractory AML and solid tumors research ^{[1][2]} .	
IC ₅₀ & Target	OXPHOS ^[1]	
In Vitro	IACS-010759 hydrochloride (10, 30, 100 nM; for 4 or 5 days) reduces viability and induces apoptosis in primary AML ^[1] . IACS-010759 hydrochloride (0.001, 0.01, 0.1, 1, 10, 100, 1000 nM; 72 hurs) robustly inhibits both OCR and galactose- dependent H460 cell viability and has nearly identical IC50 values of 1.4 nM ^[1] . IACS-010759 hydrochlorideis similarly active in mouse (average IC50 = 5.6 nM), rat (IC50 = 12.2 nM), and cynomolgus monkey (IC50 = 8.7 nM) cell lines ^[1] . IACS-010759 hydrochloride (0.01-10 μM) yieldes a maximal reduction of growth of > 50% in the majority of cancer cell lines	

www.MedChemExpress.com

	(24 of 30 pancreatic (PDAC), 19 of 20 ovarian, 13 of 16 triple-negative breast (TNBC), 8 of 10 non-small-cell lung (NSCLC)) and a subset (11of 30 PDAC, 10 of 20 ovarian, 5 of 16 TNBC, 2 of 10 NSCLC) exhibited > 100% growth inhibition ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	 IACS-010759 hydrochloride (5, 10, 25 mg/kg/day; oral; for 21 d) results in tumor regression with minimal body weight loss at the 5 or 10 mg/kg dose in mice bearing NB-1 (PGD-null) subcutaneous xenografts. IACS-010759 at the 25 mg/kg dose is not tolerated^[1]. IACS-010759 HCl (10 mg/kg; orally; QD (daily) or QD×5 (5 d on/2 d off); for 35 d) increases median survival from 28 d to longer than 60 d, whereas less-frequent dosing schedules (Q2D or Q3D) enhances survival to a lesser extent^[1]. IACS-010759 hydrochloride (0.3 mg/kg for iv; 1 mg/kg for oral) has low plasma clearance with a high volume of distribution, resulting in a prolonged terminal half-life (>24 h)^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Cell Discov. 2022 Oct 6;8(1):102.
- Nat Commun. 2023 Jul 14;14(1):4221.
- Cell Rep Med. 2022 Nov 3;100802.
- Biochem Biophys Res Commun. 2023 Jun 1.
- Biochem Biophys Res Commun. 2021 Mar 16;552:23-29.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Protopopova M. IACS-10759: A novel OXPHOS inhibitor which selectively kill tumors with metabolic vulnerabilities. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Ph

[2]. Jennifer R Molina, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med. 2018 Jul;24(7):1036-1046.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898Fax: 609-228-5909E-mail: tech@MedChemExpress.comAddress: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA