Plerixafor

Cat. No.: HY-10046 CAS No.: 110078-46-1 Molecular Formula: $C_{28}H_{54}N_{8}$ Molecular Weight: 502.78 Target: CXCR; HIV

Pathway: GPCR/G Protein; Immunology/Inflammation; Anti-infection

Storage: -20°C 3 years Powder

In solvent

4°C 2 years -80°C 6 months

-20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro Ethanol: 50 mg/mL (99.45 mM; Need ultrasonic)

DMSO: 1 mg/mL (1.99 mM; ultrasonic and warming and heat to 60°C)

H₂O: 1 mg/mL (1.99 mM; Need ultrasonic) DMF: 1 mg/mL (1.99 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.9889 mL	9.9447 mL	19.8894 mL
	5 mM	0.3978 mL	1.9889 mL	3.9779 mL
	10 mM	0.1989 mL	0.9945 mL	1.9889 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% EtOH >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 3 mg/mL (5.97 mM); Clear solution
- 2. Add each solvent one by one: 10% EtOH >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 3 mg/mL (5.97 mM); Clear solution
- 3. Add each solvent one by one: 10% EtOH >> 90% corn oil Solubility: ≥ 3 mg/mL (5.97 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Plerixafor (AMD 3100) is a selective CXCR4 antagonist with an IC₅₀ of 44 nM. Plerixafor, an immunostimulant and a hematopoietic stem cell (HSC) mobilizer, is an allosteric agonist of CXCR7. Plerixafor inhibits HIV-1 and HIV-2 replication with an EC_{50} of 1-10 $nM^{[1][2][3][4][7]}$.

IC ₅₀ & Target	¹²⁵ I-CXCL12-CXCR4 44 nM (IC ₅₀)	¹²⁵ I-CXCL12-CXCR7	HIV-1 1-10 nM (EC50)	HIV-2 1-10 nM (EC50)		
In Vitro	The CXCR4 inhibitor Plerixafor (AMD3100) is a potent inhibitor of CXCL12-mediated chemotaxis (IC $_{50}$, 5.7 nM) with a potency slightly better than its affinity for CXCR4. Plerixafor interferes with the interaction of CXCR4 with its natural ligand, SDF-1 (CXCL12). Treating the cells with CCX771 or CXCL11 has no effect on CXCL12-mediated MOLT-4 or U937 TEM. In contrast, 10 μ M Plerixafor inhibits CXCL12-mediated TEM in both cells lines ^[1] . Plerixafor prevents the infiltration of tumor-associated macrophages (TAMs) into the tumor tissues ^[8] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.					
In Vivo	Plerixafor (2 mg/kg) administration to UUO mice exacerbates renal interstitial T cell infiltration, resulting in increased production of the pro-inflammatory cytokines IL-6 and IFN-γ and decreased expression of the anti-inflammatory cytokine IL-10 ^[5] . Both perivascular and interstitial fibrosis are significantly reduced by the CXCR4 antagonist, Plerixafor (AMD3100) at 8 weeks ^[6] . LD50, mouse, SC: 16.3 mg/kg; LD50, rat, SC: >50 mg/kg; LD50, mouse and rat, IV injection: 5.2 mg/kg. MCE has not independently confirmed the accuracy of these methods. They are for reference only.					

PROTOCOL

Cell Assay [2]

U87MG cells are seeded in 96-well plates at the density of 6×10^3 cells in 200 μ L/well and treated with CXCL12, Plerixafor or with peptide R. MTT (5 μ g/mL) is added at each time point (24, 48, 72 h) during the final 2 h of treatment. After removing cell medium, 100 μ L DMSO are added and optical densities measured at 595 nm with a LT-4000MS Microplate Reader. Measurements are made in triplicates from three independent experiments^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration [3][4]

Mice^[3]

Male C57bl/6 mice (6-7 weeks old, weighing 20 g) are used. The animals are acclimated to the housing environment, which is SPF and had a temperature of 22°C and a 12h/12h light/dark cycle for a week. Then, they are randomly divided into following experimental groups, with 8 mice in each group: normal (no specific intervention), UUO+AMD3100 (mice received UUO surgery and 2 mg/kg AMD3100), and UUO+PBS (mice received UUO surgery and the same volume of PBS). AMD3100 and PBS are administered via intraperitoneal injection every day until sacrifice.

Rats^[4]

The CXCR4 antagonist, AMD3100 dissolved in H_2O , is delivered in the type 2 diabetic sand rat model at a dose of 6 mg/kg per day for 8 weeks. In complementary studies, the effect of CXCR4 antagonism (AMD3100 6mg/kg/d) on regulatory T cell numbers is examined. For these studies, AMD3100 or vehicle is delivered via minipump for a period of one week.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Cell Mol Immunol. 2020 Mar;17(3):283-299.
- Adv Funct Mater. 2020, 2000309.
- Bioact Mater. 2021 Jan 7;6(7):2039-2057.
- Nano Today. 2022, 47: 101689.
- Brain Behav Immun. 2017 Jan;59:322-332.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Zabel BA, et al. Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands. J Immunol. 2009 Sep 1;183(5):3204-11.
- [2]. Mercurio L, et al. Targeting CXCR4 by a selective peptide antagonist modulates tumor microenvironment and microglia reactivity in a human glioblastoma model. J Exp Clin Cancer Res. 2016 Mar 25;35:55.
- [3]. Yang J, et al. Continuous AMD3100 Treatment Worsens Renal Fibrosis through Regulation of Bone Marrow Derived Pro-Angiogenic Cells Homing and T-Cell-Related Inflammation. PLoS One. 2016 Feb 22;11(2):e0149926.
- [4]. Chu PY, et al. CXCR4 Antagonism Attenuates the Development of Diabetic Cardiac Fibrosis. PLoS One. 2015 Jul 27;10(7):e0133616.
- [5]. De Clercq E, et al. Mozobil® (Plerixafor, AMD3100), 10 years after its approval by the US Food and Drug Administration. Antivir Chem Chemother. 2019 Jan-Dec;27:2040206619829382.
- [6]. Seki JT, et al. Chemical Stability of Plerixafor after Opening of Single-Use Vial. Can J Hosp Pharm. 2017 Jul-Aug;70(4):270-275.
- [7]. Schols D, et al. HIV co-receptor inhibitors as novel class of anti-HIV drugs. Antiviral Res. 2006 Sep;71(2-3):216-26.
- [8]. Zheng J, et al. Toward Normalization of the Tumor Microenvironment for Cancer Therapy. Integr Cancer Ther. 2019;18:1534735419862352.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA