Product Data Sheet

Empagliflozin

Cat. No.: HY-15409 CAS No.: 864070-44-0 Molecular Formula: C23H27ClO7 Molecular Weight: 450.91 Target: **SGLT**

Pathway: Membrane Transporter/Ion Channel

Storage: Powder

2 years

3 years

-80°C In solvent 6 months

-20°C

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (110.89 mM; Need ultrasonic)

H₂O: 0.11 mg/mL (0.24 mM; Need ultrasonic and warming)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2177 mL	11.0887 mL	22.1774 mL
	5 mM	0.4435 mL	2.2177 mL	4.4355 mL
	10 mM	0.2218 mL	1.1089 mL	2.2177 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 0.5%HPMC Solubility: 5 mg/mL (11.09 mM); Suspension solution; Need ultrasonic
- 2. Add each solvent one by one: 5% DMSO >> 40% PEG300 >> 5% Tween-80 >> 50% saline Solubility: ≥ 2.87 mg/mL (6.36 mM); Clear solution
- 3. Add each solvent one by one: 5% DMSO >> 95% (20% SBE-β-CD in saline) Solubility: ≥ 2.87 mg/mL (6.36 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (4.61 mM); Clear solution
- 5. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (4.61 mM); Clear solution
- 6. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (4.61 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Empagliflozin (BI 107730 is a selective sodium glucose cotransporter-2 (SGLT-2) inhibitor with an IC $_{50}$ of 3.1 nM for human SGLT-2 ^[1] .
IC ₅₀ & Target	IC50: 3.1 nM (SGLT-2), 1.1 μ M (SGLT-5), 2 μ M (SGLT-6), 8.3 μ M (SGLT-1), 11 μ M (SGLT-4) $^{[1]}$
In Vitro	Empagliflozin is a potent and competitive SGLT-2 inhibitor with an excellent selectivity profile and the highest selectivity window of the tested SGLT-2 inhibitors over hSGLT-1. Empagliflozin inhibits the uptake of [14 C]-alpha-methyl glucopyranoside (AMG) via hSGLT-2 in a dose-dependent manner with an IC $_{50}$ of 3.1 nM, but is less potent for other SGLTs (IC $_{50}$ range: 1100-11000 nM). [3 H]-Empagliflozin displays a high affinity for SGLT-2 with a mean K $_{d}$ of 57±37 nM in the absence of glucose in kinetic binding experiments[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Glucose intolerance is significantly improved after 8 days of Empagliflozin treatment at either dose (3mg/kg Empagliflozin 3058 ± 180 vs 10 mg/kg Empagliflozin 3090 ± 219). Therefore, acute treatment with Empagliflozin has a beneficial effect on hyperglycemia and glucose intolerance. Since there are no significant differences in blood glucose homeostasis with the two different doses of Empagliflozin, and random blood glucose levels of T1DM mice are significantly improved by 3 mg/kg of Empagliflozin, the effect of the lower dose of Empagliflozin (3 mg/kg) is investigated on preserving β -cell mass and function ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Animal Administration [2]

Mice^[2]

Male C57BL/6J mice (10 weeks of age) are used. Empagliflozin is dissolved in hydroxy ethyl cellulose (HEC) and administered to mice in the experimental group (3 or 10 mg/kg) by oral gavage once daily for 8 days, whereas the vehicle group is given same volume of HEC alone.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Protein Cell. 2022 May;13(5):336-359.
- Acta Biomater. 2022 Feb 18;S1742-7061(22)00096-4.
- Circ Heart Fail. 2020 Jan;13(1):e006277.
- JACC Basic Transl Sci. 2019 Sep 4;4(5):575-591.
- JACC Basic Transl Sci. 2017 Aug;2(3):347-354.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- [1]. Grempler R, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012 Jan;14(1):83-90.
- [2]. Cheng ST, et al. The Effects of Empagliflozin, an SGLT2 Inhibitor, on Pancreatic β -Cell Mass and Glucose Homeostasis in Type 1 Diabetes. PLoS One. 2016 Jan 25;11(1):e0147391.
- [3]. Nikole J.ByrneBSc, et al. Empagliflozin Prevents Worsening of Cardiac Function in an Experimental Model of Pressure Overload-Induced Heart Failure. JACC Basic Transl Sci. 2017 Aug;2(4):347-354.

Page 2 of 3 www.MedChemExpress.com

4]. Sakaeda T, et al. Susceptib SGLT2) inhibitors. Int J Med So			in tissue distribution of sodium-dependent glucc	ose co-transporter type 2
	Caution: Product has no	ot been fully validated for me	dical applications. For research use only.	
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChemExpress.com	
	Address: 1	Deer Park Dr, Suite Q, Monmo	outh Junction, NJ 08852, USA	

Page 3 of 3 www.MedChemExpress.com