Proteins

Bosentan

Cat. No.: HY-A0013 CAS No.: 147536-97-8 Molecular Formula: $C_{27}H_{29}N_5O_6S$ Molecular Weight: 551.61

Target: **Endothelin Receptor** Pathway: GPCR/G Protein

Storage: Powder -20°C 3 years

2 years

In solvent -80°C 6 months

> -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: $\geq 100 \text{ mg/mL} (181.29 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.8129 mL	9.0644 mL	18.1287 mL
	5 mM	0.3626 mL	1.8129 mL	3.6258 mL
	10 mM	0.1813 mL	0.9064 mL	1.8129 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 5% DMSO >> 40% PEG300 >> 5% Tween-80 >> 50% saline Solubility: ≥ 2.75 mg/mL (4.99 mM); Clear solution
- 2. Add each solvent one by one: 5% DMSO >> 95% (20% SBE-β-CD in saline) Solubility: ≥ 2.75 mg/mL (4.99 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.53 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (4.53 mM); Clear solution
- 5. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (4.53 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Bosentan is a competitive and dual antagonist of endothelin-1 (ET) for the ET_A and ET_B receptors with K_i of 4.7 nM and 95 nM in human SMC, respectively.

IC ₅₀ & Target	Ki: 4.7 nM (ET $_{\rm A}$ receptor, in human SMC), 95 nM (ET $_{\rm A}$ receptor, in human SMC) $^{[1]}$
In Vitro	Bosentan (BOS) competitively and specifically antagonizes binding of 125 I-labelled ET-1 to ET _A receptors on human smooth muscle cells (SMC) and ET _B receptors on human placenta cells. The in vitro binding affinity of Bosentan to ET _A receptors on human SMC is 4.7 nM and to ET _B receptors on human SMC or placenta cells is 41 or 95 nM. Bosentan has 67-fold greater selectivity for ET _A than ET _B receptors (mean IC ₅₀ =7.1 vs 474.8 nM) in an in vitro 125 I-labeling assay ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	In hypertensive rats, Macitentan 30 mg/kg further decreases mean arterial blood pressure (MAP) by 19 mm Hg when given on top of Bosentan 100 mg/kg. Conversely, Bosentan given on top of Macitentan fails to induce an additional MAP decrease. In pulmonary hypertensive rats, Macitentan 30 mg/kg further decreases mean pulmonary artery pressure (MPAP) by 4 mm Hg on top of Bosentan, whereas a maximal effective dose of Bosentan given on top of Macitentan does not cause any additional MPAP decrease ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [2]

Cell viability is evaluated by the trypan blue exclusion test. Human dermal fibroblasts are treated with the indicated concentration of Bosentan (10, 20 and 40 μ M). Cell viability is examined at 24 and 48 hours. Stained (dead) and unstained (viable) cells are counted with a hematocytometer^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration [3]

Rats^[3]

Two-month-old DSS rats and two-month-old Wistar rats are used. Pharmacological effects on mean arterial pressure (MAP) or mean pulmonary arterial pressure (MPAP) and heart rate (HR) are measured up to 120 h after a single gavage at doses ranging from 0.1 to 100 mg/kg (Macitentan) or 3 to 600 mg/kg (Bosentan). To determine whether Macitentan can provide superior pharmacological activity vs. Bosentan, a study is designed in which: 1) Macitentan is administered on top of the maximal effective dose of Bosentan established by the dose-response curve. 2) the same dose of Bosentan is administered on top of the maximal effective dose of Macitentan. The maximal effective dose of the second compound is administered at T_{max} of the first tested compound.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Clin Immunol. 2023 Jul 5;109687.
- Hypertension. 2019 Dec;74(6):1409-1419.
- Acta Pharmacol Sin. 2022 Nov 30.
- Phytomedicine. 2019 Mar 15;56:175-182.
- Cell Biol Toxicol. 2021 Jan 20.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- [1]. Dhillon S, et al. Bosentan: a review of its use in the management of mildly symptomatic pulmonary arterial hypertension. Am J Cardiovasc Drugs. 2009;9(5):331-50.
- [2]. Akamata K, et al. Bosentan reverses the pro-fibrotic phenotype of systemic sclerosis dermal fibroblasts via increasing DNA binding ability of transcription factor Fli1. Arthritis Res Ther. 2014 Apr 3;16(2):R86.

Page 3 of 3 www.MedChemExpress.com