TPC2-A1-P

Cat. No.:	HY-131615				
CAS No.:	2804595-86-4				
Molecular Formula:	$C_{20}H_{21}BrF_{3}NO_{3}$				
Molecular Weight:	460.28				
Target:	Sodium Channel				
Pathway:	Membrane Transporter/Ion Channel				
Storage:	Powder	-20°C	3 years		
		4°C	2 years		
	In solvent	-80°C	6 months		
		-20°C	1 month		

®

MedChemExpress

SOLVENT & SOLUBILITY

Preparing Stock Solutions	Mass Solvent Concentration	1 mg	5 mg	10 mg	
	1 mM	2.1726 mL	10.8630 mL	21.7259 mL	
		5 mM	0.4345 mL	2.1726 mL	4.3452 mL
		10 mM	0.2173 mL	1.0863 mL	2.1726 mL
	Please refer to the so	lubility information to select the app	propriate solvent.		
In Vivo		lubility information to select the appropriate the opponent of the select the	•		

BIOLOGICAL ACTIVITY			
Description	TPC2-A1-P is a powerful and membrane permeable agonist of two pore channel 2 (TPC2) with an EC ₅₀ of 10.5 μM. TPC2-A1-P plays its role by mimicking the physiological actions of PI(3,5)P2. TPC2-A1-P also shows higher potency to induce Na ²⁺ mobilisation from TPC2 than TPC-A1-N (HY-131614). TPC2-A1-P can be used to probe different functions of TPC2 channels in intact cells ^{[1][2][3]} .		
IC ₅₀ & Target	EC50: 10.5 μM (TPC2) ^[2]		
In Vitro	Two-pore channels (TPC1-3) are ancient members of the voltage-gated ion channel superfamily. TPCs are expressed throughout the endo-lysosomal system and regulates the trafficking of various cargoes ^[1] . TPC2 can mediate different physiological and possibly pathophysiological effects depending on how it is activated.?The?ion selectivity of TPC2 is not fixed but rather agonist-dependent. TPC2 is a unique example of an ion channel that conducts different ions in response to different activating ligands ^[1] .		

Br

0

-OH

TPC2-A1-P (10-30 μ M) induces Ca²⁺?signals in Hela cells expressing TPC2 in the presence but not absence of extracellular Ca ²⁺. However, the responses are smaller and delayed compared to TPC2-A1-N (HY-131614), consistent with the results obtained in cells stably expressing TPC2^{L11A/L12A}. TPC2-A1-P fails to induce Ca²⁺?signals in cells expressing 'pore-dead' TPC2^{L11A/L12A/L265P} and also fails to evoke Ca²⁺?signals in cells expressing human TRPML1 re-routed to the plasma membrane (TRPML1^{ΔNC})^[1].

In endo-lysosomal patch-clamp experiments, TPC2-A1-P (10 μ M) evokes currents in endo-lysosomes isolated from cells expressing TPC2 and TPC2^{M484L}, the currents evoked by TPC2-A1-P are significantly larger than those evoked by TPC2-A1-N (HY-131614) in both wild-type and gain-of-function variant, and exhibits an EC₅₀?value of 0.6 μ M for TPC2-A1-P^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

• Nat Commun. 2022 Aug 2;13(1):4481.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Susanne Gerndt, et al. Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function. Elife. 2020 Mar 16;9:e54712.

[2]. Xuhui Jin, et al. Targeting Two-Pore Channels: Current Progress and Future Challenges. Trends Pharmacol Sci. 2020 Aug;41(8):582-594.

[3]. Gerndt S, et al. Discovery of lipophilic two-pore channel agonists. FEBS J. 2020;287(24):5284-5293.

Caution: Product has not been fully validated for medical applications. For research use only.