

Product Data Sheet

Endomorphin 1 acetate

Cat. No.: HY-P0185A **CAS No.:** 1276123-71-7

Molecular Weight: 670.75

Molecular Formula:

Target: Opioid Receptor

Pathway: GPCR/G Protein; Neuronal Signaling

 $C_{36}H_{42}N_{6}O_{7}$

Storage: Sealed storage, away from moisture and light, under nitrogen

Powder -80°C 2 years -20°C 1 year

* In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light, under nitrogen)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 125 mg/mL (186.36 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	1.4909 mL	7.4543 mL	14.9087 mL
	5 mM	0.2982 mL	1.4909 mL	2.9817 mL
	10 mM	0.1491 mL	0.7454 mL	1.4909 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (3.10 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: \geq 2.08 mg/mL (3.10 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (3.10 mM); Clear solution

BIOLOGICAL ACTIVITY

Description Endomorphin 1 acetate, a high affinity, highly selective agonist of the μ-opioid receptor (K_i: 1.11 nM), displays reasonable

affinities for kappa₃ binding sites, with K_i value between 20 and 30 nM. Endomorphin 1 acetate has antinociceptive

properties^{[1][2][4]}.

 IC_{50} & Target μ Opioid Receptor/MOR

1.11 nM (Ki)

In Vitro

Endomorphin 1 acetate inhibits Forskolin (HY-15371) (1 μ M) stimulated cyclic AMP formation with a pIC₅₀ value of 8.03 in In CHO μ cells^[5].

Endomorphin 1 (1-10 μ M) acetate increases interleukin-8 secretion in Caco-2 cells^[6].

Endomorphin 1 (1 μM) acetate inhibits excitatory transmission in adult rat substantia gelatinosa neurons^[7].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Endomorphin 1 (i.c.v.) acetate shows antinociceptive properties in mice, with an ED₅₀ value of 6.16 nM^[2]. Endomorphin 1 (50 μ g/kg, i.v., rats) acetate alleviates myocardial ischemia/reperfusion injury (MIRI) by inhibiting the inflammatory response^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	ICR mice ^[2] .		
Dosage:	6.16 nM (ED ₅₀)		
Administration:	Intracerebroventricularly (i.c.v.) injection		
Result:	Inhibited dose-dependently the tail-flick response.		
Animal Model:	Rats ^[3] .		
Dosage:	50 μg/kg		
Administration:	Intravenously following LAD ligation for 25 min, subsequently the LAD was reperfused for 120 min.		
Result:	Alleviated MIRI by reducing the production of free radicals. Dncreased LDH and CK-MB activities.		
	Increased SOD activity and decreased MDA content. Decreased IL-6 and TNF-α plasma content.		

REFERENCES

- [1]. Goldberg IE, et al. Pharmacological characterization of endomorphin-1 and endomorphin-2 in mouse brain. J Pharmacol Exp Ther. 1998 Aug;286(2):1007-13.
- [2]. Tseng LF. The antinociceptive properties of endomorphin-1 and endomorphin-2 in the mouse. Jpn J Pharmacol. 2002 Jul;89(3):216-20.
- [3]. Zhang WP, et al. Effects of endomorphin-1 postconditioning on myocardial ischemia/reperfusion injury and myocardial cell apoptosis in a rat model. Mol Med Rep. 2016 Oct;14(4):3992-8.
- [4]. Koda Y, et al. Synthesis and in vitro evaluation of a library of modified endomorphin 1 peptides. Bioorg Med Chem. 2008 Jun 1;16(11):6286-96.
- [5]. Harrison C, et al. The effects of endomorphin-1 and endomorphin-2 in CHO cells expressing recombinant mu-opioid receptors and SH-SY5Y cells. Br J Pharmacol. 1999 Sep;128(2):472-8.
- [6]. Neudeck BL, et al. Endomorphin-1 alters interleukin-8 secretion in Caco-2 cells via a receptor mediated process. Immunol Lett. 2002 Dec 3;84(3):217-21.
- [7]. Fujita T, et al. Inhibition by endomorphin-1 and endomorphin-2 of excitatory transmission in adult rat substantia gelatinosa neurons. Neuroscience. 2006;139(3):1095-105.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com