Inhibitors

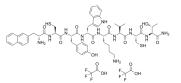
Angiopeptin TFA

Molecular Weight:

Cat. No.: HY-P2090A CAS No.: 2478421-60-0

Molecular Formula: $C_{58}H_{73}F_{6}N_{11}O_{14}S_{2}$

Sequence Shortening: {Nal}CYWKVCT-NH2


Target: Somatostatin Receptor; Adenylate Cyclase

Pathway: GPCR/G Protein; Neuronal Signaling Storage: Sealed storage, away from moisture

1326.39

Powder -80°C 2 years -20°C 1 year

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

H₂O: 10 mg/mL (7.54 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	0.7539 mL	3.7696 mL	7.5393 mL
	5 mM	0.1508 mL	0.7539 mL	1.5079 mL
	10 mM			

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Angiopeptin TFA, a cyclic octapeptide analogue of somatostatin, is a weak sst ₂ /sst ₅ receptor partial agonist with IC ₅₀ values of 0.26 nM and 6.92 nM, respectively. Angiopeptin TFA is a potent inhibitor of growth hormone release and insulin-like growth factor-1 (IGF-1) production. Angiopeptin TFA inhibits adenylate cyclase or stimulates extracellular acidification. Angiopeptin TFA has the potential for coronary atherosclerosis research ^{[1][2]} .
IC ₅₀ & Target	IC50: 0.26 nM (sst2) and 6.92 nM (sst5) ^{[1][2]}
In Vitro	Angiopeptin (0.1 nM- $10 \mu M$; for $1 h$) TFA acts as a partial agonist (pEC ₅₀ =6.57) with a maximum response of 423% at $3 \mu M$ on the release of tritium on CHO hsst ₂ cells ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Angiopeptin (20 and $50\mu g/kg$; i.h.) TFA significantly inhibits neointimal formation ^[1] . Angiopeptin (20 $\mu g/kg$; per day) TFA significantly inhibits coronary artery myointimal proliferation in cardiac allografts by appmximalely $50\%^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Lundergan CF, et al. Peptide inhibition of myointimal proliferation by angiopeptin, a somatostatin analogue. J Am Coll Cardiol. 1991;17(6 Suppl B):132B-136B.

[2]. Alderton F, et al. Somatostatin receptor-mediated arachidonic acid mobilization: evidence for partial agonism of synthetic peptides. Br J Pharmacol. 2001;132(3):760-766.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com