Product Data Sheet

LSKL, Inhibitor of Thrombospondin (TSP-1) (TFA)

Cat. No.: HY-P0299A Molecular Formula: $C_{23}H_{43}F_3N_6O_7$ Molecular Weight: 572.62

Sequence: Leu-Ser-Lys-Leu-NH2

Sequence Shortening: LSKL-NH2

Target: TGF-β Receptor Pathway: TGF-beta/Smad

Storage: Sealed storage, away from moisture

> 2 years Powder -80°C -20°C 1 year

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

KILI

SOLVENT & SOLUBILITY

In Vitro

DMSO: 250 mg/mL (436.59 mM; Need ultrasonic) H₂O: 100 mg/mL (174.64 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.7464 mL	8.7318 mL	17.4636 mL
Stock Solutions	5 mM	0.3493 mL	1.7464 mL	3.4927 mL
	10 mM	0.1746 mL	0.8732 mL	1.7464 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: PBS Solubility: 100 mg/mL (174.64 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (3.63 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (3.63 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

LSKL, Inhibitor of Thrombospondin (TSP-1) TFA is a latency-associated protein (LAP)-TGF β derived tetrapeptide and a competitive TGF-β1 antagonist. LSKL, Inhibitor of Thrombospondin (TSP-1) TFA inhibits the binding of TSP-1 to LAP and alleviates renal interstitial fibrosis and hepatic fibrosis. LSKL, Inhibitor of Thrombospondin (TSP-1) TFA suppresses subarachnoid fibrosis via inhibition of TSP-1-mediated TGF-β1 activity, prevents the development of chronic hydrocephalus and improves long-term neurocognitive defects following subarachnoid hemorrhage (SAH). LSKL, Inhibitor of

	Thrombospondin (TSP-1) TFA can readily crosse the blood-brain barrier $^{[1][2]}$.		
IC ₅₀ & Target	TGF-β1 ^[1]		
In Vitro	The KTFR sequence from ADAMTS1 is responsible for the interaction with the LSKL, Inhibitor of Thrombospondin (TSP-1) (LSKL peptide) from the latent form of TGF- β , leading to its activation. There is a stable binding mode between LSKL, Inhibitor of Thrombospondin (TSP-1) and ADAMTS1 KTFR sequence, characterized by 3 salt bridges and 2 hydrogen bonds ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	LSKL, Inhibitor of Thrombospondin (TSP-1) (1 mg/kg; intraperitoneal injection; male Sprague-Dawley rats) is protective against subarachnoid fibrosis, attenuates ventriculomegaly and effectively suppresses hydrocephalus. LSKL, Inhibitor of Thrombospondin (TSP-1) treatment inhibits TGF-β1 activity and subsequent Smad2/3 signaling ^[1] . ?LSKL, Inhibitor of Thrombospondin (TSP-1) (30 mg/kg, i.p.) successfully inhibits transforming growth factor (TGF) β-Smad signal activation induced by partial hepatectomy. LSKL, Inhibitor of Thrombospondin (TSP-1) successfully attenuates TGF-β-Smad signal activation by antagonizing TSP-1, but not by reducing TSP-1 protein expression. LSKL, Inhibitor of Thrombospondin (TSP-1) accelerates hepatocyte proliferation after hepatectomy ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	103 male Sprague-Dawley rats (6 weeks of age; 160-180 g) with subarachnoid hemorrhage $(SAH)^{[1]}$	
	Dosage:	1 mg/kg	
	Administration:	Intraperitoneal injection	
	Result:	Was protective against subarachnoid fibrosis, attenuated ventriculomegaly and effectively suppressed hydrocephalus.	

CUSTOMER VALIDATION

- J Exp Clin Cancer Res. 2022 Aug 26;41(1):259.
- Cell Death Dis. 2022 Jul 30;13(7):663.
- Environ Pollut. 2020 Apr;259:113915.
- Front Immunol. 2022 Mar 18;13:853894.
- Front Cell Dev Biol. 18 February 2021.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Liao F, et al. LSKL peptide alleviates subarachnoid fibrosis and hydrocephalus by inhibiting TSP1-mediated TGF-\(\beta\)1 signaling activity following subarachnoid hemorrhage in rats. Exp Ther Med. 2016 Oct;12(4):2537-2543. Epub 2016 Aug 31.

[2]. Laurent MA, et al. In silico characterization of the interaction between LSKL peptide, a LAP-TGF-beta derived peptide, and ADAMTS1. Comput Biol Chem. 2016 Apr;61:155-61.

[3]. Kuroki H, et al. Effect of LSKL peptide on thrombospondin 1-mediated transforming growth factor β signal activation and liver regeneration after hepatectomy in an experimental model. Br J Surg. 2015 Jun;102(7):813-25.

Page 2 of 3 www.MedChemExpress.com

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com