Product Data Sheet

(Arg)9 TFA

Molecular Weight:

Cat. No.: HY-P0133A CAS No.: 2283335-13-5

Molecular Formula: $C_{56}H_{111}N_{36}F_3O_{12}$

Sequence: Arg-Arg-Arg-Arg-Arg-Arg-Arg

1537.71

Sequence Shortening: RRRRRRRR

Target: Others Others Pathway:

Sealed storage, away from moisture Storage:

> Powder -80°C 2 years

-20°C 1 year

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

BIOLOGICAL ACTIVITY

Description	(Arg)9 (Nona-L-arginine) TFA is a cell-penetrating peptide (CPP) made up of 9 arginine residues. (Arg)9 TFA has neuroprotective property, exhibits neuroprotective activity with an IC ₅₀ of 0.78 μ M in the glutamic acid model ^{[1][2]} .		
IC ₅₀ & Target	IC50: $0.78\mu\text{M}$ (neuroprotection) ^[1] .		
In Vitro	(Arg)9 (Nona-L-arginine; 5-10 μM) TFA provides significant neuroprotection in a dose–response manner following glutamic acid exposure (IC ₅₀ =0.78 μM). Following kainic acid exposure, (Arg)9 TFA is neuroprotective, but less effective than in the glutamic acid model (IC ₅₀ =0.81 μM). (Arg)9 TFA also shows neuroprotection following in vitro ischemia (IC ₅₀ =6 μM) ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	(Arg)9 (Nona-L-arginine; 1 μM/kg (600 μL); i.v.; once, for 30min; male Sprague–Dawley ratspermanent middle cerebral artery stroke model) TFA shows neuroprotective effects and reduces infarct volume ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	Male Sprague–Dawley rats (270 to 320 g) permanent middle cerebral artery stroke model [2]	
	Dosage:	1 μM/kg (600 μL)	
	Administration:	Intravenous injection; once, over 5 minutes	
	Result:	Reduced significantiy 20% in infarct volume.	

CUSTOMER VALIDATION

• In Vitro Cell Dev Biol-Pl. 06 January 2022.

Page 1 of 2

See more customer validations on www.MedChemExpress.com			
REFERENCES			
[1]. Meloni BP, et, al. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia i models using primary cortical neuronal cultures. Cell Mol Neurobiol. 2014 Mar;34(2):173-81.	njury		
[2]. Meloni BP, et, al. Poly-arginine and arginine-rich peptides are neuroprotective in stroke models. J Cereb Blood Flow Metab. 2015 Jun;35(6):993-1004.			
Caution: Product has not been fully validated for medical applications. For research use only.			
Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com			
Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA			