

Product Data Sheet

Glucagon (1-29), bovine, human, porcine

Cat. No.: HY-P0082 CAS No.: 16941-32-5

Molecular Formula: $C_{153}H_{225}N_{43}O_{49}S$

3482.75 Molecular Weight: HSQGTFTSDYSKYLDSRRAQDFVQWLMNT

Sequence: His-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-Arg-Ala-Gln-As

p-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr

HSQGTFTSDYSKYLDSRRAQDFVQWLMNT Sequence Shortening:

Target: GCGR

Pathway: GPCR/G Protein

Sealed storage, away from moisture and light Storage:

> Powder -80°C 2 years -20°C 1 year

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

SOLVENT & SOLUBILITY

In Vitro

H₂O: 6.67 mg/mL (1.92 mM; ultrasonic and adjust pH to 3 with HCl)

DMSO: 2 mg/mL (0.57 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	0.2871 mL	1.4356 mL	2.8713 mL
	5 mM			
	10 mM			

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 0.2 mg/mL (0.06 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 0.2 mg/mL (0.06 mM); Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description Glucagon (1-29), bovine, human, porcine is a peptide hormone, produced by pancreatic α -cells. Glucagon stimulates gluconeogenesis^[1]. Glucagon (1-29), bovine, human, porcine activates HNF4 α and increases HNF4 α phosphorylation^{[2][3]}.

In Vitro Upon binding to its receptor Gcgr, Glucagon activates cAMP-PKA signaling to stimulate hepatic glucose production (HGP)

and cause hyperglycemia^[1].

?Glucagon stimulates both hepatic kisspeptin1 production and gluconeogenesis [1].

?Glucagon (100 nM) represses CYP7A1 mRNA expression in human primary hepatocytes^[3].

?Glucagon (100 nM) increases phosphorylayion of HNF4 α ^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis^[3]

Cell Line:	Human primary hepatocytes (H1211, HH1215)	
Concentration:	100 nM	
Incubation Time:		
Result:	Resulted in a marked increase in the amount of phosphorylated HNF4 $\!\alpha$.	

In Vivo

Low-dose (20 μ g/kg) Glucagon increases glycemia and does not stimulate insulin secretion in ambient-fed mice. High-dose (1 mg/kg) Glucagon lowers glycemia compared with PBS control and stimulates insulin secretion in ambient-fed mice^[4]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	C57BL/6J mice (12- to 24-week-old) ^[4]	
Dosage:	20 μg/kg and 1 mg/kg	
Administration:	Administered by i.p. injection; 45 minutes	
Result:	Low-dose (20 μg/kg) increased glycemia and did not stimulate insulin secretion. High-dose (1 mg/kg) lowered glycemia and stimulated insulin secretion.	

CUSTOMER VALIDATION

- Cell Res. 2023 Apr;33(4):273-287.
- Nat Metab. 2022 Jan 6.
- Mol Cell. 2023 Feb 22;S1097-2765(23)00102-8.
- Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):3144-3149.
- Phytomedicine. 2021 Mar;83:153487.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- $[1]. Song WJ, et al. Glucagon \ regulates \ hepatic \ kisspept in \ to \ impair \ insulin \ secretion. \ Cell \ Metab. \ 2014 \ Apr \ 1;19(4):667-81.$
- [2]. Hirota K, et al. Hepatocyte nuclear factor-4 is a novel downstream target of insulin via FKHR as a signal-regulated transcriptional inhibitor. J Biol Chem. 2003 Apr 11;278(15):13056-60.
- [3]. Song KH, et al. Glucagon and cAMP inhibit cholesterol 7alpha-hydroxylase (CYP7A1) gene expression in humanhepatocytes: discordant regulation of bile acid synthesis and gluconeogenesis. Hepatology. 2006 Jan;43(1):117-25.
- [4]. Capozzi ME, et al. Glucagon lowers glycemia when β-cells are active. JCI Insight. 2019 Jul 23;5. pii: 129954.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com