

Cat. No.: HY-P0069 1445179-97-4 CAS No.: Molecular Formula: $C_{164}H_{286}N_{66}O_{40}$ Molecular Weight: 3822.44

d-(DQSRPVQPFLNLTTPRKPRPPRRRQRRKKRG)-NHa

Sequence: $\{d-(Asp-Gln-Ser-Arg-Pro-Val-Gln-Pro-Phe-Leu-Asn-Leu-Thr-Thr-Pro-Arg-Lys-Pro-Arg-Pro-Phe-Leu-Asn-Leu-Thr-Pro-Arg-Pro-Phe-Leu-Asn-Leu-Thr-Pro-Phe-Leu-Thr-Pro-Phe-Leu-Asn-Leu-Thr-Pro-Phe-Leu-Thr-Pro$

ro-Pro-Arg-Arg-Arg-Gln-Arg-Arg-Lys-Lys-Arg-Gly)}-NH2

Sequence Shortening: {d-(Asp-Gln-Ser-Arg-Pro-Val-Gln-Pro-Phe-Leu-Asn-Leu-Thr-Thr-Pro-Arg-Lys-Pro-Arg-P

ro-Pro-Arg-Arg-Arg-Gln-Arg-Arg-Lys-Lys-Arg-Gly)}-NH2

Target: JNK

Pathway: MAPK/ERK Pathway

Storage: Sealed storage, away from moisture

> Powder -80°C 2 years -20°C 1 year

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO : ≥ 100 mg/mL (26.16 mM) $H_2O : \ge 50 \text{ mg/mL } (13.08 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	0.2616 mL	1.3081 mL	2.6161 mL
	5 mM	0.0523 mL	0.2616 mL	0.5232 mL
	10 mM	0.0262 mL	0.1308 mL	0.2616 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: Saline

Solubility: 50 mg/mL (13.08 mM); Clear solution; Need ultrasonic

2. Add each solvent one by one: PBS

Solubility: 25 mg/mL (6.54 mM); Clear solution; Need ultrasonic

3. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline

Solubility: ≥ 2.5 mg/mL (0.65 mM); Clear solution

4. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)

Solubility: ≥ 2.5 mg/mL (0.65 mM); Clear solution

5. Add each solvent one by one: 10% DMSO >> 90% corn oil

Solubility: ≥ 2.5 mg/mL (0.65 mM); Clear solution

Page 1 of 3

BIOLOGICAL ACTIVITY

Description	D-JNKI-1 (AM-111) is a highly potent and cell-permeable peptide inhibitor of JNK.	
IC ₅₀ & Target	JNK	
In Vitro	D-JNKI-1 (AM-111; $1 \mu M$ -1 mM) treatment prevents apoptosis and loss of neomycin-exposed hair cells ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
In Vivo	D-JNKI-1 (AM-111; 10 μ M) prevents nearly all hair cell death and permanent hearing loss induced by neomycin ototoxicity in the scala tympani of the guinea pig cochlea. Local delivery of D-JNKI-1 also prevents acoustic trauma-induced permanent hearing loss in a dose-dependent manner ^[1] . D-JNKI-1 (0.3 mg/kg, i.p.) reverses these pathological events in the brain mitochondria of the rat and almost completely abolishes cytochrome c release and PARP cleavage ^[2] . D-JNKI-1 (1 μ g/kg, s.c.) results in a significant decrease in the disease activity index, and reduces the expression of CD4 ⁺ and CD8 ⁺ cells in mice ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

PROTOCOL

Animal
Administration [3]

D-JNKI-1 is dissolved in a 0.9% sodium chloride solution for subcutaneous application. Each group (the 1.0% DSS group and the 1.5% DSS group) is randomly subdivided into an intervention group (n = 15) and a control group (n = 15). The mice in the intervention group receive three subcutaneous nuchal administrations of 1 μ g/kg D-JNKI-1 on days 2, 12, and 22. The mice in the control group receive physiological saline subcutaneously as a negative control at the same time points in a comparable stress situation.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Nat Commun. 2020 Jan 3;11(1):71.
- Cell Rep. 2021 Feb 9;34(6):108736.
- Oncotarget. 2017 Oct 6;8(54):92864-92879.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Wang J, et al. A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci. 2003 Sep 17;23(24):8596-607.

- [2]. Zhao Y, et al. The JNK inhibitor D-JNKI-1 blocks apoptotic JNK signaling in brain mitochondria. Mol Cell Neurosci. 2012 Mar;49(3):300-10.
- [3]. Kersting S, et al. The impact of JNK inhibitor D-JNKI-1 in a murine model of chronic colitis induced by dextran sulfate sodium. J Inflamm Res. 2013 May 3;6:71-81.
- [4]. Wang C, et al. Wu-tou decoction attenuates neuropathic pain via suppressing spinal astrocytic IL-1R1/TRAF6/JNK signaling. Oncotarget. 2017 Oct 6;8(54):92864-92879.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com