

Screening Libraries

Proteins

Product Data Sheet

Guangxitoxin 1E

Cat. No.: HY-P1427

CAS No.: 1233152-82-3

Molecular Formula: $\mathsf{C_{_{178}H_{_{248}}N_{_{44}}O_{_{45}}S_{_{7}}}$ Molecular Weight: 3948.61

EGECGGFWWKCGSGKPACCPKYVCSPKWGLCNFPMP(Disulfide bridge:Cys4-Cys19;Cys1 Sequence Shortening:

1-Cys24;Cys18-Cys31)

Target: Potassium Channel

Pathway: Membrane Transporter/Ion Channel Storage: Sealed storage, away from moisture

> Powder -80°C 2 years -20°C 1 year

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

BIOLOGICAL ACTIVITY

Description	Guangxitoxin 1E is a potent and selective blocker of $K_V 2.1$ and $K_V 2.2$ channels. Guangxitoxin 1E inhibits $K_V 2$ with an IC ₅₀ of 1-3 nM. $K_V 2$ channels underlie delayed-rectifier potassium currents in various neurons ^{[1][2]} .
IC ₅₀ & Target	IC50: 1-3 nM (K _V 2 channels); 24-54 nM (K _V 4.3 channels) ^[2]
In Vitro	Guangxitoxin 1E inhibits K_V2 with an IC_{50} of 1-3 nM but has no significant effect on $K_V1.2$, $K_V1.3$, $K_V1.5$, $K_V3.2$ and BK potassium channels, nor on calcium and sodium channels $Ca_V1.2$, $Ca_V2.2$, $Na_V1.5$, $Na_V1.7$, $Na_V1.8$, whereas the IC_{50} for $K_V4.3$ channels is 24-54 nM $^{[2]}$. In mouse β -cells, Guangxitoxin 1E inhibits 90% of I_{DR} and, as for $K_V2.1$, shifts the voltage dependence of channel activation to more depolarized potentials, a characteristic of gating-modifier peptides. Guangxitoxin 1E broadens the β -cell action potential, enhances glucose-stimulated intracellular calcium oscillations, and enhances insulin secretion from mouse pancreatic islets in a glucose-dependent manner $^{[2]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Hönigsperger C, et al. Physiological roles of Kv2 channels in entorhinal cortex layer II stellate cells revealed by Guangxitoxin-1E. J Physiol. 2017 Feb 1;595(3):739-757.

[2]. Herrington J, et al. Blockers of the delayed-rectifier potassium current in pancreatic beta-cells enhance glucose-dependent insulin secretion. Diabetes. 2006 Apr;55(4):1034-42.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 1 of 1