

Product Data Sheet

β-Amyloid (1-40) (rat)

Cat. No.: HY-P1387 CAS No.: 144409-98-3 Molecular Formula: $C_{190}H_{291}N_{51}O_{57}S$

Molecular Weight: 4233.76

Asp-Ala-Glu-Phe-Gly-His-Asp-Ser-Gly-Phe-Glu-Val-Arg-His-Gln-Lys-Leu-Val-Phe-Al Sequence:

 $a\hbox{-}Glu\hbox{-}Asp\hbox{-}Val\hbox{-}Gly\hbox{-}Ser\hbox{-}Asn\hbox{-}Lys\hbox{-}Gly\hbox{-}Ala\hbox{-}Ile\hbox{-}Ile\hbox{-}Gly\hbox{-}Leu\hbox{-}Met\hbox{-}Val\hbox{-}Gly\hbox{-}Val\hbox{-}Val$

DAEFGHDSGFEVRHQKLVFFAEDVGSNKGAIIGLMVGGVV Sequence Shortening:

Target: Amyloid-β; Apoptosis

Neuronal Signaling; Apoptosis Pathway:

Storage: Sealed storage, away from moisture and light

> Powder -80°C 2 years -20°C 1 year

BIOLOGICAL ACTIVITY

Description	β -Amyloid (1-40) (rat) is a rat form of the amyloid β -peptide, which accumulates as an insoluble extracellular deposit around neurons, giving rise to the senile plaques associated with Alzheimer's disease (AD). β -Amyloid (1-40) (rat) increases 45 Ca ²⁺ influx, induces neurodegeneration in the rat hippocampal neurons of the CA1 subfield. β -Amyloid (1-40) (rat) induces apoptosis. β -Amyloid (1-40) (rat) can be used for the research of Alzheimer's disease ^{[1][2]} .				
In Vitro	β -Amyloid (1-40) (rat) (1 μM; 1 h) increases 45 Ca ²⁺ influx and elevates Ca ²⁺ in cortical synaptosomes ^[1] . β -Amyloid (1-40) (rat) (3 nM) induces neurodegeneration in the rat hippocampal neurons of the CA1 subfield and induces apoptosis ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
In Vivo	β-Amyloid (1-40) (rat) (1.7 mg; ICV, for 7 d; swiss and C57BL/6 mice) induces the learning and memory deficits in mice ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.				
	Animal Model: Dosage:	Swiss and C57BL/6 mice ^[3]			
	Administration:	Intracerebroventrical injection; for 7 days			
	Result:	Presented spatial learning and memory impairments.			

REFERENCES

[1]. MacManus A, et, al. Enhancement of (45)Ca(2+) influx and voltage-dependent Ca(2+) channel activity by beta-amyloid-(1-40) in rat cortical synaptosomes and cultured cortical neurons. Modulation by the proinflammatory cytokine interleukin-1beta. J Biol Chem

[2]. Miguel-Hidalgo JJ, et, al. Beta-amyloid(1-40)-induced neurodegeneration in the rat hippocampal neurons of the CA1 subfield. Acta Neuropathol. 1998 May;95(5):455-65.

^{*} The compound is unstable in solutions, freshly prepared is recommended.

	s beta-amyloid peptide-(1-40) adm sponse. Behav Brain Res. 2007 Feb	ninistration in C57BL/6 and Swiss albino o 2	o mice: Evidence for a dissociation
		nedical applications. For research u	
Tel: 609-228-6898	Fax: 609-228-5909 : 1 Deer Park Dr, Suite Q, Monm	E-mail: tech@MedChemExpro	ess.com
Address.	. 1 Deel Falk Di, Suite Q, Moilli	ioutii Julictioli, NJ 08632, OSA	

Page 2 of 2 www.MedChemExpress.com